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A B S T R A C T   

Rainbows contribute to human wellbeing by providing an inspiring connection to nature. Because the rainbow is 
an atmospheric optical phenomenon that results from the refraction of sunlight by rainwater droplets, changes in 
precipitation and cloud cover due to anthropogenic climate forcing will alter rainbow distribution. Yet, we lack a 
basic understanding of the current spatial distribution of rainbows and how climate change might alter this 
pattern. To assess how climate change might affect rainbow viewing opportunities, we developed a global 
database of crowd-sourced photographed rainbows, trained an empirical model of rainbow occurrence, and 
applied this model to present-day climate and three future climate scenarios. Results suggest that the average 
terrestrial location on Earth currently has 117 ± 71 days per year with conditions suitable for rainbows. By 2100, 
climate change is likely to generate a 4.0–4.9 % net increase in mean global annual rainbow-days (i.e., days with 
at least one rainbow), with the greatest change under the highest emission scenario. Around 21–34 % of land 
areas will lose rainbow-days and 66–79 % will gain rainbow-days, with rainbow gain hotspots mainly in high- 
latitude and high-elevation regions with smaller human populations. Our research demonstrates that alter-
ations to non-tangible environmental attributes due to climate change could be significant and are worthy of 
consideration and mitigation.   

1. Introduction 

Atmospheric optical phenomena such as rainbows, mirages, and 
coronas result from the interaction of light and matter in the atmosphere 
(Gedzelman and Vollmer, 2008) and are thus part of the physical 
environment of Earth’s ecosystems. Anthropogenic climate change has 
substantial effects on atmospheric optical phenomena. For instance, 
climate change is linked to increasing severity and frequency of forest 

fires which boost particulate matter concentrations and change sunset 
quality (Haider et al., 2019; Hyslop, 2009). Yet, most climate change 
impact research has centered on changes with clear socio-economic 
links like heat waves, droughts, wildfires, storms, floods, and sea level 
rise (Adger et al., 2013; Mora et al., 2018). We largely lack an under-
standing of how anthropogenic climate change alters the location and 
timing of atmospheric optical phenomena. 

The rainbow, a common atmospheric optical phenomenon, is a 
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multicolored circle in the sky that results from the refraction and 
reflection of light by liquid water drops (Hardwick, 2004). Primary 
rainbows are only visible from ground level at sun angles between 
0◦ and 42◦, which occur in the early morning and late afternoon (Fig. 1) 
(Businger, 2021). Rainbow sightings are further constrained by the 
presence of rain and absence of cloud cover, which may block sunlight. 
Climate change will thus alter the spatio-temporal distribution of 
rainbow occurrence by affecting evaporation and convergence of 
moisture which alter patterns of precipitation (Pendergrass and Hart-
mann, 2014; Zhang et al., 2013) and cloud cover (Boucher et al., 2013; 
Enriquez-Alonso et al., 2016). For instance, more extreme rainfall 
concentrated in brief periods occurring during fewer days per year could 
lower rainbow occurrence by increasing the number of annual dry days, 
reducing rainfall during times of day with suitable sun angles, and 
blocking sunlight with cloud cover during rainy periods. Areas where 
precipitation changes from snow to rain under a warming climate may 
experience conditions more conducive to rainbow occurrence.  

Rainbows have been part of the lived human experience throughout 
history and around the world and can also be found in arts, literature, 
music, films, folklore, religion, and mythology (Hardwick, 2004; Lee 
and Fraser, 2001; MacCannell, 2018; Vince, 2020). The place-based 
nature of rainbows, their aesthetic qualities, and their various sym-
bolic meanings may invoke emotion, support connections with cultural 
identity, and provide information about the natural world (Box 1). They 
are accessible in that they may occur in any environment, from cities to 
wilderness areas. Yet, to our knowledge, there has been no research 
exploring rainbows within the environmental values literature, despite 

its strong engagement with place and exploration of the linkages be-
tween experience of nature and human wellbeing (e.g., Chan et al., 
2016; Chapin and Knapp, 2015; Russell et al., 2013). 

Here, we situate rainbows within the ecosystem service cascade 
(Haines-Young and Potschin, 2010). First, we argue that rainbows are a 
geophysical function of ecosystems generated by the process of light 
refraction by rain droplets. Rainbows then provide cultural ecosystem 
services (Box 1), “the nonmaterial benefits people obtain from ecosys-
tems through spiritual enrichment, cognitive development, reflection, 
recreation, and aesthetic experiences” (Millennium Ecosystem Assess-
ment, 2005). While rainbows occur anywhere with appropriate sun 
angle, precipitation, and light, each viewer experiences a unique sensory 
encounter with each rainbow. Thus, the value of rainbows to people is 
derived partly from singular rainbow viewing experiences, events 
imbued with meaning based on the relationship between the viewer, the 
rainbow, and the surrounding context (e.g., place and time). 

Conceptually, we argue that these values fall mainly into the rela-
tional category (Chan et al., 2016). Specifically, we observe that rain-
bows are experienced in specific places, are often connected with 
spirituality, beauty, and heritage, and are sometimes associated with 
experiences that contribute to a good life. They are also non- 
substitutable, in that replacements for the viewing experience such as 
a picture of a rainbow taken at that place or a rainbow in a different 
place would likely not offer equivalent value, especially when an indi-
vidual often sees a rainbow in a particular location. These are all attri-
butes of relational values as described by Himes and Muraca (2018). 
Rainbows may also have instrumental value; for instance, their occur-
rence could generate revenue via tourism. 

Like other cultural ecosystem services (Satz et al., 2013), those 
generated by rainbows may have been overlooked by environmental 
researchers because of difficulties – real or perceived – in measuring and 
comparing the values they provide and the view that given other grave 
environmental problems facing humanity, a focus on rainbows is not 
high priority. Aesthetic cultural ecosystem services, while significant for 
human wellbeing and ecosystem management and conservation, have 
received particularly limited attention (Dronova, 2019; Tribot et al., 
2018). Yet, like other functions that provide cultural ecosystem services 
(Adger et al., 2013), if rainbow frequency or distribution change due to 
shifts in climate, the value of rainbows in bridging human and non- 
human nature may also change. Research focused on these changing 
connections supports goals of equity and justice by recognizing diverse 
local values and norms that extend beyond those heavily influenced by 
Western European and colonial scientific traditions (Gould et al., 2020). 

The effects of climate change on rainbow sightings, and associated 
implications for connections between people and places where rainbows 
occur, have been unknown. To evaluate how climate change may alter 
rainbow viewing opportunities, we ask: Under what conditions do 
rainbows occur? What is their current spatial distribution? How might 
climate change alter opportunities to view rainbows? 

Our research informs whether and how rainbow occurrence is likely 
to change with changing climate across global locations and provides 
information about the regions where rainbows - and any contributions 
they make to human wellbeing - may incur the most significant changes. 
Our results can guide future analyses connecting such changes to the 
value rainbows provide to humans, to enhance understanding of how 
current planetary shifts are manifesting in personal and, by extension, 
cultural ways (Anderson, 2020). 

2. Materials and methods 

To address these questions, we first collected geographically and 
temporally located rainbow occurrence data and combined this with a 
dataset of presumed non-rainbows. We then used these data to train and 
validate a model of rainbow presence based on climate and sun angle 
data. Then, we applied this model to map current and potential future 
annual rainbow occurrence across the Earth’s surface. Next, we 

Fig. 1. Theoretical requirements for rainbow occurrence. From ground 
level, primary rainbows are only visible during the day, when sun angles are 
below 42◦ and direct sunlight - not blocked by clouds - can be refracted from a 
droplet of water (rain). Sun angle determines rainbow height in the sky. At sun 
angles >42◦, light refraction is below the horizon, so rainbows are not visible 
from ground level. For example, a rainbow can be viewed when the sun is 
behind the viewer with a solar angle of 4◦, but not when the sun is directly 
overhead (90◦), before sunrise (<0◦), or when the sun is in front of the viewer. 
These requirements restrict the timeframe and specific conditions of rain and 
cloud cover relative to the viewer needed for rainbows to occur. Thus, rainbows 
can be affected by anthropogenic changes in precipitation and cloud cover, 
including those due to increasing concentrations of greenhouse gasses in the 
atmosphere because of human activity. 
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quantified future potential changes in rainbow occurrence under several 
climate change scenarios and compared the distributions of projected 
human population to the locations of projected rainbow frequency. 
Finally, we identified hotspots of rainbow loss and gain under projected 
climate change. 

2.1. Rainbow observations 

We downloaded all photographs from Flickr (https://www.flickr. 
com) with the term “rainbow” in the hashtag, description, or title that 
were taken between 2004 and 2019 and that included date and time of 
photo collection and geographic location of photo upload. This resulted 
in 121,558 photographs. We then cleaned the dataset to ensure that 
photographs were unmodified precipitation-associated rainbows accu-
rately located in time and space. First, we removed photographs taken 
prior to the launch of the Flickr platform (February 10, 2004). We also 
excluded photographs that were uploaded on a different date than the 
photo was taken, as this difference in time may indicate a change in 
location. Only photographs containing Exchangeable image file format 
(Exif) information, which includes precise time, date, and location 

labels, were retained. 
Co-authors of this manuscript manually curated the remaining 

photographs by viewing each photo and marking it as a rainbow or not. 
Specifically, curators eliminated photographs of rainbows that were not 
associated with precipitation (e.g., some images were of rainbow trout, 
flags, or children’s drawings), and those with watermarks that poten-
tially indicate photo modification and a time and location label not 
reflective of the time and location the photo was collected. Because 
manual photo review may lead to errors, photographs were curated a 
second time by randomly assigned co-authors. 

After curation, we excluded rainbow observations with sun angles <
0◦ or > 42◦ that we calculated for each time and location (Section 2.3) 
because such angles may indicate a photo upload location different from 
the location the photo was collected. We acknowledge that this may 
have eliminated photographs taken by observers in aircraft or on slopes, 
which allow viewing of rainbows at such sun angles. The final rainbow 
dataset, which included observations on all continents except 
Antarctica, consisted of 7,094 photographs of atmospheric rainbows 
collected between February 11, 2004, and December 7, 2013 (Fig. 2). 

Box 1. Significance of rainbows to humans. 

The rainbow is beautiful and ephemeral, a spectrum of color visible only while conditions of light and rain droplets are just right. Many have 
ascribed rainbows with positive meaning. For ancient Greeks, Romans, Norsemen, and Polynesians, rainbows were a path between Earth and 
Heaven created by Gods (Lee and Fraser, 2001; Businger, 2021). In the Bible, rainbows are mentioned as God’s promise to never again flood the 
Earth (Kuruppu and Liverman, 2011). Contemporary society commonly uses rainbows in flags and emblems to symbolize peace, happiness, and 
equality (Vince, 2020). For instance, the University of Hawai‘i adopted the rainbow as its mascot after a rainbow appeared during a football 
game when the Hawai‘i team won (Associated Press, 2013). Rainbows are an object of fantasy in advertising and storytelling and a sign of hope, 
solidarity, and wellbeing (Lee and Fraser, 2001; Vince, 2020). Who has not heard that there is treasure at the end of the rainbow? 

Rainbows have also been characterized in negative ways. In the folklore of the Karen people of Southeast Asia, the rainbow is a dangerous 
demon that eats children (Jenkins, 2019). In several cultures in Central and South America, it is a malign spirit that causes harm (Lee and Fraser, 
2001). People from various tropical locales see rainbows as snakes (Löwenstein, 1961; Veland et al., 2013). For example, the Rainbow Serpent is 
a powerful and essential part of Aboriginal mythology across cultural groups on the Australian continent (Lee and Fraser, 2001). 

Because of their association with light and rainfall, rainbows also provide information and meaning related to weather patterns. Rainbows have 
been attributed the ability to stop or start a rain shower. For example, in Estonian folklore, the rainbow provides rain by sucking up water from 
waterbodies and then sprinkling it back on Earth (Lee and Fraser, 2001). More functionally, rainbows are a near-term predictor of weather, as 
indicated by the phrase from American folklore “Rainbow in the morning, sailors take warning; rainbow at night, sailors’ delight.” (White and 
Hand, 2013). Here, the rainbow provides a gauge for the location and direction of a rain shower relative to the location of an observer.  

Fig. 2. Rainbow occurrence data used to train and validate the model. The color of the grid cell indicates the number of training data points in that cell (n =
7,094 positive rainbow observations). 
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2.2. Non-rainbows 

The rainbow classification model (see Section 2.4) required infor-
mation on conditions without rainbows. To provide these, we created a 
complementary dataset representing the same places where rainbow 
photographs were taken, but during random times from the period 
covered by the rainbow observation dataset. Because we assumed that 
non-rainbows were more common than rainbows, we selected three 
non-rainbow observations for each rainbow observation, generating a 
non-rainbow dataset with 21,282 records. 

2.3. Predictor variables 

Our predictive model assumes that rainbow occurrence is a function 
of rain droplets and light, which is an interaction between cloud cover 
and sun angle. Elevation gradients (e.g., hills) may also affect rainbow 
occurrence as they can influence the angle at which the sunlight can be 
refracted and reflected by raindrops back to the observer. 

We derived mean total liquid phase precipitation rate (kg m− 2 s− 1), 
cloud cover (%), elevation (m), and sun angle (◦) for each observation in 
the rainbow and non-rainbow datasets (Dataset 1). We used ERA5 
hourly data on single levels for precipitation and cloud cover (Hersbach 
et al., 2018). ERA5 is an atmospheric reanalysis of past climate with 
0.25◦ resolution. We chose ERA5 data because of their global scope, time 
frame that covered our photo data, hourly temporal resolution, and 
broad use among global change researchers. Because ERA5 mean total 
precipitation rate includes both liquid and solid phases (Hersbach et al., 
2018), but rainbows should occur only in the presence of liquid phase 
precipitation which allows for refraction of light, we subtracted mean 
snowfall rate (solid-phase precipitation; kg m− 2 s− 1) from mean total 
precipitation rate (kg m− 2 s− 1). When liquid precipitation values were 
less than zero, a known effect of spatial interpolation of the ERA5 pre-
cipitation data (European Centre for Medium-Range Weather Forecasts, 
2013), we set these values to zero. To ensure that training data were 
comparable to the three-hour projections from the Coupled Model 
Intercomparison Project Phase 6 (CMIP6; Eyring et al., 2016; see Section 
2.5), we averaged climate variables over three-hour periods, including 
the hour before and the hour after the observation time. Sun angles were 
calculated for each time and location using the R packages insol (Cor-
ripio, 2020) and suncalc (Thieurmel and Elmarhraoui, 2019). Elevation 
was extracted from NASA Shuttle Radar Topography Mission global 1 
arc second data (USGS, n.d.). 

2.4. Model training and validation 

We trained and tested a recursive partitioning and regression tree 
model to identify the conditions associated with rainbow occurrence. 
We used the rpart package in R to develop this model, using the “class” 
method with priors proportional to data counts (Therneau et al., 2022). 
To avoid overfitting, we pruned the model with a complexity parameter 
value of 0.3. To assess model utility, 70 % of rainbow and non-rainbow 
observations were used to train the model, and the remaining 30 % were 
used to evaluate model accuracy. We used overall accuracy and rainbow 
prediction accuracy to assess model quality. Including elevation and 
variation in elevation in initial model testing led to negligible im-
provements in accuracy, so we excluded this variable from the model. 
Thus, in the final model, the occurrence of a rainbow was the dependent 
variable, and sun angle, liquid precipitation, and cloud cover were in-
dependent variables. 

2.5. Projected occurrence of rainbow conditions 

To map changes in the distribution of the number of rainbow-days 
per year (i.e., the number of days per year with at least one rainbow), 
we applied the model to gridded global circa-2000 climate data and 
future circa-2100 climate projections. Specifically, we used ERA5 data 

from 1996 to 2005, as well as three-hour data from 13 Earth System 
Models (r1i1f1p1 variant) under four scenarios developed for CMIP6 
(Eyring et al., 2016). These consisted of the “historical” experiment in 
the period from 1996 to 2005, and the shared socio-economic pathways 
(SSPs) SSP1-2.6, SSP2-4.5, and SSP5-8.5 for the period from 2091 to 
2100 (Table 1). We aggregated CMIP6 data into circa-2000 (1996–2005) 
and circa-2100 (2091–2100) decades for comparison. CMIP6 data con-
sisted of three-hour liquid phase precipitation flux (i.e., precipitation 
flux minus snowfall flux) and cloud area fraction converted to percent 
cloud cover to match the ERA5 metric. Sun angles were calculated for 
the middle hour of each three-hour time chunk. 

We applied the classification model to ERA5 data and the data from 
each Earth System Model in its original resolution. After rainbows were 
classified, we counted the number of days each year that rainbows were 
predicted in each grid cell and calculated the mean number of annual 
rainbow-days per grid cell across each ten-year circa-2000 and circa- 
2100 period. The decadal projections of each model were then inter-
polated to a 1.5◦ × 1.5◦ global grid using bilinear interpolation. These 
gridded decadal mean projections were used to estimate the CMIP6 
multi-model mean and standard deviation. 

Changes in rainbows were quantified as the difference in CMIP6 
derived days with rainbows in the circa-2100 and circa-2000 decades. 
We report means and standard deviations of rainbow-days weighted by 
grid cell area at a 14 km resolution, the approximate resolution of the 
human population dataset at the equator (see Section 2.7). Because most 
of our training data were collected over land, and because population 
datasets are limited to land areas, we report results only for grid cells 
that overlap with land. Current and future rainbow maps are available in 
Dataset 2, and maps of changes are available in Dataset 3. 

2.6. Accuracy and precision assessment and sensitivity analysis 

Climate change projections are subject to several sources of uncer-
tainty, including uncertainty associated with an Earth Systems Model’s 
initial conditions, as well as emissions scenarios and model attributes 
such as resolution (Lehner et al., 2020). To better understand un-
certainties arising from the Earth System Models, we quantified preci-
sion, the variability in rainbow predictions among Earth System Models, 
and accuracy, the extent to which models predict the meteorological 
conditions that support rainbow occurrence in the historical climate. To 
assess precision, we calculated the average change in rainbows among 
Earth System Models and their coefficient of variation. We defined areas 
of high uncertainty as locations where the multi-model standard devi-
ation exceeded the multi-model mean, and repeated calculations after 
removing those cells (Dataset 4). To assess accuracy, we compared the 
predicted number of annual rainbow-days, as described above, using the 

Table 1 
Earth System Models used to support rainbow occurrence models. We 
selected Earth System Models that provided three-hour data for precipitation, 
snow, and cloud cover for each year between 1996 and 2005 (historical 
experiment) and between 2091 and 2100 for all the following shared socio- 
economic pathways (SSPs): SSP1-2.6, SSP2-4.5, or SSP5-8.5.  

Earth system model Data reference 

ACCESS-CM2 Dix (2019) 
AWI-CM-1–1-MR Semmler (2018) 
BCC-CSM2-MR Xin (2018) 
CMCC-CM2-SR5 Lovato (2020) 
CMCC-ESM2 Lovato et al. (2021) 
EC-Earth3 EC-Earth Consortium (EC-Earth) (2019) 
IPSL-CM6A-LR Boucher (2018) 
KACE-1-0-G Byun et al. (2019) 
MIROC6 Tatebe and Masahiro (2018) 
MPI-ESM1-2-HR Jungclaus (2019) 
MPI-ESM1-2-LR Wieners (2019) 
MRI-ESM2-0 Yukimoto (2019) 
NESM3 Cao (2019)  
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ERA5 reanalysis data and the multi-model CMIP6 Earth System Model 
mean for the decadal average of circa-2000 predictions. 

2.7. Population analysis 

To understand relationships between change in rainbow-days and 
future populations, which allows us to begin to evaluate how alterations 
in rainbows induced by climate change may affect people, we used 
gridded global human population data consistent with the socioeco-
nomic pathways associated with our climate scenarios (Jones and 
O’Neill, 2016). We extracted population for each land location consid-
ered in the analysis, for each climate scenario. 

2.8. Hotspot analysis 

To identify locations of substantial change in the number of annual 
rainbow-days between circa-2000 and circa-2100, we used the hotspots 
package in R (Darrouzet-Nardi, 2018). This approach first calculates the 
robust root mean square (RRMS) of the data x, where n is the number of 
data points and i represents each individual data point (Equation (1)). 

RRMS =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

median(x)2
+

(∑
|xi − mean(x) |

n

)2
√

(1) 

The hotspot cutoff is calculated as described in Equation (2), where p 
= 0.90 and F− 1 is the inverse cumulative distribution function for the t 
distribution. 

cutoff =
[
median(

x
RRMS

)+F− 1(p)
]
× RRMS (2)  

3. Results 

3.1. Rainbow prediction model 

The rainbow prediction model had overall accuracy of 86 % and 
rainbow prediction accuracy of 75 %. The model parameters were as 
follows: 1) sun angle (no rainbow if <0.00096◦); 2) precipitation (no 
rainbow if <1.15e-7 kg m− 2 s− 1); 3) sun angle (no rainbow if >41.33◦); 
and 4) cloud cover (no rainbow if >96 %). 

Fig. 3 depicts the bounds of the model, which largely conform to the 
theoretical expectations required for rainbow occurrence (Fig. 1)(Busi-
nger, 2021), overlaid on a density plot of rainbow observation points 
used for model training and testing. About 12 % of observations with 
very high cloud cover proportion and 12 % with very low precipitation 
were not captured by our model. Almost all observed sun angle values 

(>99 %) were included by the model. 
Results were qualitatively consistent among Earth System Models 

(Fig. 4a). The multi-model mean predicted the frequency of contempo-
rary rainbows more realistically than any individual model (Fig. 4a). 
Overall, circa-2000 rainbow-days predicted from the CMIP6 multi- 
model mean and the ERA5 reanalysis database were highly correlated 
(Pearson’s coefficient of correlation = 0.96; Fig. 4b). In locations with 
more than around 150 rainbow-days per year, CMIP6-derived rainbow- 
days were consistently less than ERA5-derived predictions, but pre-
dictions were still strongly and positively related (Fig. 4b). ERA5- 
derived rainbow-days tended to exceed CMIP6-derived rainbow-days 
over much of the tropics and the Himalayas but were less than CMIP6 
predictions in several other regions (Fig. 5c). Removal of grid cells with 
high uncertainty where the multi-model rainbow occurrence standard 
deviation exceeded the multi-model mean amplified the global gross 
mean change in rainbow-days in locations of loss or gain but maintained 
relative differences between the three future scenarios (Fig. 6a). 

3.2. Current rainbow-days 

Circa-2000, application of the rainbow prediction model to the ERA5 
data suggests that the average global land location experienced 117 ±
71 rainbow-days per year (mean ± standard deviation of the mean), 
while the CMIP multi-model mean was 108 ± 57 rainbow-days per year. 
Across latitudes, areas closest to the poles had the fewest mean annual 
rainbow-days, while the tropics had the most annual mean rainbow- 
days. Examining frequency across regions, rainbows were very com-
mon in the coastal tropics, including parts of eastern South America (e. 
g., Suriname, Guyana), eastern Central America (e.g., eastern Nicaragua 
and Honduras), southern West Africa (e.g., southern Liberia), eastern 
East Africa (e.g., Kenya), eastern Madagascar, and many islands and 
archipelagoes (e.g., the Caribbean, the Hawaiian islands; Fig. 5a-b). 
They were also very common in select non-coastal areas, including the 
Andes mountains in northern Peru and southern Ecuador, and the 
border between Gabon and Republic of the Congo. They were least 
common in Antarctica, Greenland, the Arabian Peninsula, the Sahara 
Desert, and northwest China (Fig. 5a-b). 

3.3. Future rainbow-days 

By 2100, changes in cloud cover and liquid precipitation due to 
increased greenhouse gas emissions are projected to lead to a net in-
crease in mean global annual rainbow-days, with a global annual mean 
of +4.3 (SSP 2.6) to +5.3 (SSP 8.5) additional rainbow-days across 
scenarios (Fig. 6b). After accounting for the projected future distribution 

Fig. 3. Environmental conditions under which observed rainbows occurred and rainbow prediction model parameters. Density plots of cloud cover-sun 
angle (a), precipitation-sun angle (b), and precipitation-cloud cover (c) conditions under which the 7,094 photographed rainbows in our training and testing 
database occurred. The solid blue lines illustrate recursive partitioning and regression tree model cutoffs, and the grey shaded areas indicate conditions under which 
rainbows are not predicted by the model. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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of human population, compared to circa-2000, opportunities for the 
average person to view rainbows in 2100 also increase under all future 
scenarios, from +1.9 (SSP 8.5) to +4.0 (SSP 2.6) more rainbow-days per 
year (Fig. 6b). This increase is just 36–92 % of the net area-weighted 
change because relatively fewer (more) people will live where in-
creases (decreases) in rainbow occurrence are projected to be greatest. 

However, these small net changes mask substantial redistribution of 
rainbows across space. Around 21–34 % of land areas will lose rainbow- 
days and 66–79 % will gain rainbow-days, with relatively more loca-
tions experiencing loss or gain under higher emission futures (Fig. 6a). 
Under the highest emission future (SSP5 8.5), hotspots of decline include 
the Mediterranean, much of Brazil and northeast South America, 
southern Australia, and parts of Central and Southern Africa (Fig. 7). 
Rainbow-gain hotspots are expected in northern North America (e.g., 
Alaska) and Eurasia (e.g., northern Norway), the Korean Peninsula, 
Japan, the Tibetan Plateau, and eastern Borneo (Fig. 7). 

4. Discussion 

With a dataset of temporally and geographically located rainbow 
observations, we trained a model of rainbow occurrence and then 
applied this model to gridded climate projections to understand the 
current and potential future distribution of rainbows. To our knowledge, 
this is the first attempt to map rainbow occurrence, and thus represents a 
foray into better understanding how anthropogenic climate change may 
alter the distribution of the rainbow, an atmospheric optical phenome-
non that we argue provides cultural ecosystem services. In this discus-
sion, we explore the possible drivers of observed changes in rainbows, 
the implications of these changes for humans, and some limitations of 
our research. 

4.1. Factors associated with rainbow occurrence and change 

Rainbows occur within a simple “envelope” of conditions defined by 
physics, which was relatively well captured by our model when applied 
to reanalysis and Earth System Model data. Yet, the complexity of spe-
cific interactions between sun angle, cloud cover, and liquid precipita-
tion across time (e.g., the relative amount of precipitation that occurs 
when cloud cover is very high, and the diurnal patterns of precipitation 
and cloud cover that interact with sun angle across seasons) prevents 
precisely linking such conditions to the distribution of annual rainbow- 
days produced by the current application of our rainbow prediction 

model. 
Nevertheless, we observe certain meteorological commonalities be-

tween regions with very low and high rainbow occurrence circa-2000. 
Specifically, annual rainbow-days were lowest in polar regions with 
little liquid precipitation and desert areas with low overall precipitation. 
Rainbow occurrence was greatest in many coastal tropical regions and 
some other parts of the wet tropics which all have - relative to the global 
distribution - high levels of annual liquid precipitation. Yet, rainbow 
frequency varied widely across wet tropical locations. For instance, it 
was relatively low in Borneo, potentially because of high year-round 
cloud cover levels over the island (Vignesh et al., 2020). 

Locations of projected rainbow loss and gain under SSP5-8.5 also 
share certain general attributes. Most hotspots of rainbow loss are pro-
jected to have lower total precipitation by 2100 except those in Central 
Africa, Madagascar, and central South America (Gutiérrez et al., 2021; 
Iturbide et al., 2021), and all are projected to have more annual dry days 
(Douville et al., 2021) and less total annual cloud cover (IPCC, 2021; Ma 
et al., 2022). Rainbow gain hotspots are mostly located at higher lati-
tudes or at very high elevations (i.e., the Tibetan Plateau), and thus gains 
may be partially linked to projected increases in overall precipitation 
(Gutiérrez et al., 2021; Iturbide et al., 2021) and dry days (Douville 
et al., 2021) in these locations, as well as a change in the phase of pre-
cipitation from snow to rain (Bintanja, 2018). Yet two rainbow gain 
hotspots - eastern Borneo and northern Japan - will see overall precip-
itation increases but more dry days per year (Douville et al., 2021; 
Gutiérrez et al., 2021; Iturbide et al., 2021). 

4.2. Implications of rainbow change for human wellbeing 

Our projections indicate that under all climate change scenarios, by 
2100 the average human will have more opportunities to see rainbows 
than in year 2000. Anthropogenic climate change will bring new 
rainbow-viewing opportunities for people in northern latitudes, where 
more overall and liquid precipitation creates a greater likelihood of 
rainbow occurrence (Bintanja, 2018; IPCC, 2021). However, certain 
heavily populated locations, such as the Mediterranean, are likely to see 
a substantial reduction in rainbow occurrence by 2100. Given that 
human connection with nature is a critical dimension of environmental 
concern and happiness (Soga and Gaston, 2016), further research may 
be needed to understand whether and how these predicted changes to 
rainbow occurrence will alter human interaction with non-human na-
ture, and how these outcomes vary across multiple dimensions including 

Fig. 4. Rainbow prediction accuracy. (a) A comparison of 13 CMIP6 Earth System Models (Table 1) to ERA5 reanalysis data (Hersbach et al., 2018) using a Taylor 
diagram that indicates correlation (curved axis), ratio of standard deviations (x-y axes), and root mean squared error (blue curve). The blue circle indicates a perfect 
fit, the red circle depicts the multi-model mean, and the black circles represent a comparison of each Earth System Model to ERA5 data. (b) Relationship between the 
CMIP6 multi-model mean and the ERA5 reanalysis prediction of mean annual rainbow-days per grid cell from 1996 to 2005 (Pearson’s correlation coefficient =
0.96). Dashed line indicates 1:1 relationship. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 

K.M. Carlson et al.                                                                                                                                                                                                                             



Global Environmental Change 77 (2022) 102604

7

space, peoples’ values, and wealth (Tschakert et al., 2019). As with other 
climate change related risks (Hess et al., 2008), the implications of a 
change in rainbow occurrence are likely to be place-specific and could 
interact with the positive or negative perceptions of rainbows in that 
place as well as other psychological considerations such as loss aversion 
and the relative value of rare phenomena (Courchamp et al., 2006; 
Wang et al., 2017). 

It is also relevant to consider effects on economies, for example via 
changes in tourist-based income and property values. In locations of 

severe rainbows decline where economies partly depend on nature- 
based tourism and rainbows play an important role in mythologies 
connected to place (e.g., Greece), people may consider undertaking 
mitigation activities. These could include ensuring that good rainbow- 
viewing locations remain unobstructed or constructing water features 
(e.g., fountains) that can produce rainbows. Adaptation is also possible if 
people alter their travel choices to target locations where rainbows are 
more common or their outdoor activities to maximize locations and 
times where rainbows are likely to occur. Parallel global changes such as 

Fig. 5. Comparison of circa-2000 rainbow-days across global lands. Annual rainbow-days for the 1996–2005 period were predicted from (a) ERA5 reanalysis 
and (b) the multi-model mean of 13 CMIP6 Earth System Models. (c) The difference in rainbow-days between the CMIP6 multi-model mean and ERA5, where positive 
values indicate more predicted rainbows from CMIP6. Latitudinal graphs represent means across land area at each latitude, and the gap in the black line in the 
southern hemisphere is due to no land area at that latitude. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.) 
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urbanization and increasing use of technology (Kellert et al., 2017) may 
also reduce rainbow viewing opportunities. For instance, people living 
in cities may not be able to see rainbows that are present due to buildings 
blocking their view, and individuals who spend more time indoors will 
have fewer chances to see real rainbows. 

However, given the gradual nature of likely climate change-induced 
alterations to rainbow occurrence, it is possible that people will easily 
adapt to or even fail to notice such changes. For instance, research on 
human perceptions of temperature indicates that recent experience sets 
a subjective “baseline” by which people evaluate the future (Moore 
et al., 2019). 

4.3. Limitations 

Our results are subject to several limitations and uncertainties. First, 
the distribution of the data used to train and validate the model may be 
biased. Physical barriers such as mountains and buildings can impede 
views of rainbows. Thus, rainbows that occurred near urban and 
mountainous areas may be underrepresented in training data. We did 
not include air pollution, which can prevent rainbow viewing, in our 
model. Moreover, we only used photographs labeled with the English 
word “rainbow”, and thus likely under-sampled in locations where 
people tagged rainbows with other languages or in regions where Flickr 

Fig. 6. Projected future changes in the occurrence of rainbows. These plots depict the CMIP6 multi-model global mean (center of cross) and standard deviation 
of the mean (crosshairs) of change in rainbow-days from circa-2000 to circa-2100. (a) Depicts all grid cells versus only high certainty cells (i.e., those for which the 
multi-model standard deviation did not exceed the multi-model mean) divided into locations that experienced gains and losses to demonstrate the spatial hetero-
geneity of directional change (diagonal line = 1:1 ratio). (b) Depicts all grid cells, and compares the multi-model mean and standard deviation weighted by grid cell 
land area versus weighted by projected grid cell human population in 2100. (For interpretation of the colors in this figure, the reader is referred to the web version of 
this article.) 

Fig. 7. Potential future changes in global rainbow distribution under the high emissions scenario. Map of multi-model mean change in annual rainbow-days 
from circa-2000 to circa-2100 under SSP5-8.5. Black polygons indicate “hotspots” of change with probability > 0.90 that the value is a statistical outlier from a t 
distribution. Latitudinal graph represents means across land areas at each latitude, and the gap in the red line in the southern hemisphere is due to no land area at 
that latitude. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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was not widely used during the study time frame. For instance, we have 
relatively few training data points from Africa and Russia (Fig. 2). 
Because cloud fraction, precipitation, and sun angle co-occurrence vary 
across regions and latitudes, our rainbow training and testing sample is 
unlikely to represent the actual distribution of rainbow and non-rainbow 
conditions globally and the accuracy of our model may thus be lower in 
places with conditions that were not represented in our training dataset. 
Moreover, while we took steps to minimize the likelihood that photo-
graph upload location differed from the location where the photograph 
was collected, it is possible that the locations of some of the photographs 
were inaccurate. Finally, our non-rainbow dataset almost certainly 
included some false negatives (i.e., rainbows), likely at a higher rate 
than false positives in our Flickr-derived dataset. This may have biased 
our model toward rainbow under-prediction. 

Another limitation relates to the climatic variables used to build the 
empirical model of rainbows. Given our motivation to evaluate the 
global spatial distribution of rainbows, we used reanalysis data, which 
combine observations of weather with a dynamic model to create a 
global, gridded, gapless reconstruction of recent past climate. This 
interpolation may add errors to the conditions under which rainbows 
may occur. Despite these known sources of error in training and climate 
data, our model predicted the actual occurrence of rainbows with good 
accuracy, yielding results that largely conform to the theoretical ex-
pectations of rainbow occurrence (Fig. 1, Fig. 3)(Businger, 2021). 

Finally, the CMIP6 model outputs contain known biases for the 
timing of variables we included in our model, which may have inter-
acted with sun angle. For instance, CMIP6 models simulate relatively 
more nighttime and fewer daytime clouds than observed (Chen et al., 
2022), and tend to produce peak precipitation too early in the day 
(Christopoulos and Schneider, 2021). Such diurnal biases could explain 
the imperfect relationship between annual rainbow-days derived from 
ERA5 reanalysis and the CMIP6 multi-model mean (Fig. 4b). 

4.4. Conclusion 

We find that the ongoing emission of greenhouse gasses due to 
human activity could influence an aspect of the climate system that 
humans have held dear throughout history and around the world: 
rainbows. While many world regions, particularly those at high lati-
tudes, will gain rainbow-days, several densely populated places are 
projected to be hotspots of rainbow loss. Our results underscore the fact 
that climate change will alter not just tangible earth system dynamics 
with clear socio-economic implications, but also parts of the earth sys-
tem that we cannot touch, and that may affect us in more subtle ways. 
Although our focus here was rainbows, other non-tangibles (e.g., sound) 
that connect people and their environments will be affected by a 
changing climate (Krause and Farina, 2016). There is an urgent need to 
better understand the magnitude, location, and timing of these changes, 
as well as whether and how such changes will alter human wellbeing. 
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